Contact UsNeed
help
?










Mart > IP Mart

    
Clock divider by 3 100 Points 52.000 Gates 370 MHz 130 nm  
There are 2 types of circuits in digital logic world. One is combinational, and the other is sequential. The difference between them is that the latter one has storage (memory) while the former one does not. Thus, in contrast to combinational circuits, whose output depends only on the current values of its inputs, the output of sequential circuits depends not only on the current values of its inputs but also on the past values of them. Based on the characteristic of sequential circuits, we can build counters. In addition, we can further build clock dividers with the counters we designed Introduction
Rapid IO PHY in 65nm By Quotes 2.295 μm^2 25 MHz 65 nm  
The IP is designed for chips that perform high bandwidth data communication while operating at low power consumption. It can also be used in any serial interface where timing and electrical specification can be satisfied. This IP has four individual Transmitter (TX) and Receiver (RX) channels, and one common phase lock loop (PLL). Introduction
RC Oscillator By Quotes 0.970 μm^2 10.2 Hz 3 nm  
The digitally controlled RC oscillators optimized for ultra low power applications.                                Application:                                            • Hand held devices • Wireless Power devices • Battery powered stand-by devices Introduction
Power Controller By Quotes 0.165 μm^2 None 90 nm  
It is a configurable core that is configured for each specific SoC, delivering all the necessary auxiliary supply, monitoring and protection.  Introduction
8051 Core By Quotes None 20 MHz None  
The 8051 has gained great popularity since its introduction and is estimated it is  used in a large percentage of all embedded system products.  The  basic  form  of  8051  core  includes  several  on-chip  peripherals,  like  timers  and  counters, additionally there are 128 bytes of on-chip data memory and up to 4K bytes of  on-chip program memory. Introduction
UART Serial Interface Controller By Quotes None 300 MHz None  
UART compatible Serial Interface Controller with receive and transmit FIFOs and support for all standard bit rates from 9600 to 921600 baud.    Applications UART Communications RS232, RS422, RS485 etc. Micro-controller interfacing Introduction
I2C Master Serial Interface Controller By Quotes None 300 MHz None  
Master serial controller compatible with the popular Philips® I2C standard. Features a simple command interface and permits multiple I2C slaves to be controlled directly from  ASIC device. Supports standard (100 kbits/s), fast (400 kbits/s) and custom data rates well above 4 Mbits/s. Setup and hold-times on the SDA pin are fully configurable.    Applications Inter-chip board-level communications Standard 2-wire comms between a wide range of peripherals, MCUs and COTs ICs   Introduction
I2C Slave Serial Interface Controller By Quotes None 300 MHz None  
Slave serial controller compatible with the popular Philips® I2C standard. Permits an I2C Master to communicate with your ASIC device via a set of user-defined config and status registers. Supports standard (100 kbits/s), fast (400 kbits/s) and custom rates in excess of 4 Mbits/s.    Applications I2C slave communication via your ASIC Inter-chip board-level communications Introduction
8-bit / 16-bit Flash memory controller By Quotes None 200 MHz None  
FLASH memory controller ideal for interfacing to a wide range of parallel FLASH memory components . Features a fully synchronous command interface and a set of configurable timing parameters for compatibility with different devices.  Applications Any application where non-volatile storage is required Offline storage of parameters and data via your Chip     Introduction
DDR4 SDRAM Controller Core By Quotes None None None  
Double Data Rate 4 (DDR4) SDRAM Controller Core is designed for use in applications requiring high memory throughput, high clock rates and full programmability.   The core uses bank management modules to monitor the status of each SDRAM bank.  Banks are only opened or closed when necessary, minimizing access delays.  Up to 32 banks can be managed at one time.    The core supports all new DDR4 features, including: 3DS device configurations, write CRC, data bus inversion (DBI), fine granu-larity refresh, additive latency, per-DRAM addressability, and temperature controlled refresh. Introduction
μIP Price Logic Gate Count Clock Rate Technology   Ratings

 2  3  4  5  6  7  8  9  10  11