Contact UsNeed
help
?










Mart > IP Mart

    
AES Codec with 128-bit datapath 20000 Points 22.000 K Gates 260 MHz 180 nm  
The IP core implements the NIST FIPS-197 Advanced Encryption Standard and can be programmed to either encrypt or decrypt 128-bit blocks of  data using a 128-bit, 192-bit or 256-bit key. The IP has been carefully designed for high throughput applications with optimal logic resources utilization. The encryptor core accepts a 128-bit plaintext input word, and generates a corresponding 128-bit ciphertext output word using a supplied 128, 192, or 256-bit AES key. The decryptor core provides the reverse function, generating plaintext from supplied ciphertext, using the same AES key as was used for encryption. The hardware roundkey expansion logic has been designed as a discrete building block. This allows either to build a complete stand-alone AES solution, or to save logic resources by leaving the key generation process to the user. Alternatively, the roundkey expansion logic can be shared between multiple encryption/decryption cores for optimal silicon area resources utilization. The implementation is very low on latency, high speed with a simple interface for easy integration in SoC applications.  Introduction
Configurable Reed Solomon Encoder 30000 Points 2.500 K Gates 250 MHz 180 nm  
Our IP core implements the Reed Solomon encoding algorithm and is parameterized in terms of bits per symbol, maximum codeword length and maximum number of parity symbols. It  also  supports  varying  on  the  fly   shortened  codes.  Therefore  any desirable code-rate can be easily achieved rendering the decoder ideal for fully adaptive FEC applications. ntRSE core supports continuous or burst  decoding.  The  implementation  is  very  low  latency,  high  speed with a simple interface for easy integration in SoC applications. Introduction
BRAINS 50000 Points 5.250 K Gates 1.2 GHz 40 nm  
With improvement of technology node and IC design is geting more complex, the ratio of embedded memory in SoCs have been exceeding 50%. The fault types of memory are getting complex. The Memory BIST (Built-In Self-Test) is generated for efficient controlling IC cost. The traditional BIST method is inserted along with single memory. If there are many memories in SoCs, the area and testing time of SoCs are expanded a lot due to insertion of BIST. Therefore the SoCs' cost will increase rapidly because memory testing time is too long.  We devoted in developing SRAM testing solutions for a long time. BRAINS is based on memory testing patents to reduce testing time and increase yield rate. In addition, BRAINS has many unique features to increase SoCs' reliability and stability.   Introduction
HEART(High Efficient Accumulative Repairing Technical) 50000 Points 5.250 K Gates 2.2 GHz 40 nm  
HEART can efficient repair faulty SRAM after using BRAINS. SoCs can mantain correctness of functions and avoid fatal error of system reault in SRAM's defect through SRAM's repairing technical. HEART is SRAM accumulative repairing technical, and it combines advantages of Soft-repair and Hard-repair. HEART supports internal registers of SoCs and external storages of SoCs to record SRAM's faulty information. Once SoCs have new SRAM's defect after using them for a long time, users can repeated repair SRAM's defect through HEART. In addtion, HEART also support "On-Demad" testing and repairing requirement. It means that users can enable system registers of SoCs or signal of HEART to test and repair SRAM at one when SoCs have fatal error situations.   Introduction
10-bit 300 MSPS Video DAC IP in 90 nm 60000 Points 76.000 K μm^2 300 MHz 90 nm  
The  UIP_DAC10-300M_205370  is  a  10-bit  DAC designed  in  low  power  TSMC  90  nm  logic process. It consists of a current steering DAC. The DAC uses a fully differential architecture. The  input  data  of  the  DAC  is  in  1.2V,  in unsigned format.   A 3.3V  supply  is used for  the analog  portion of  the  IP.  This  high  performance  DAC  is designed  for  CVBS  standard  or  RGB  Video signal  bandwidth.  The  IP  consumes  only  41 mA  at  300  MSPS  operation  and  utilizes  a silicon area of only 0.076 mm2. The IP does not  require  any  external  decoupling  and  is ideal for integration in mixed-signal systems.   The  DAC  output  current  is  6-bit programmable.  The  IP  architecture  is  robust and can be ported to other 90 nm processes.   APPLICATIONS Composite Video (CVBS) HDTV RGB Video ​ DAC Output Model Introduction
10-bit 80 MSPS ADC IP in 130 nm 60000 Points 210.000 K μm^2 80 MHz 130 nm  
UIP_ADC10_80M_156287 is an ultra-compact and very low power analog-to-digital converter (ADC) silicon IP. The 10-bit 80 MSPS ADC includes an internal custom bandgap voltage reference. It is capable of supplying bias currents to other parallel ADCs.   The ADC uses fully differential pipeline architecture with custom low-disturbance digital correction technique which allows single supply bus for both digital and analog. The ADC is designed for high dynamic performance for input frequencies up to Nyquist. This makes the IP perfectly suitable for video, imaging and communication appliances.   The IP is available in different metal options as well as deep N-well (DNW) option for SoC with high level of substrate noise. It consumes only 24mW at 80 MSPS operation and requires silicon area of 0.21 mm2. The IP does not require any external decoupling and is ideal for integration in mixed-signal systems. The output data of ADC is available in 2’s complement format.   UIP_ADC10_80M_156287 can be used in the following applications:   ‧Digital imaging ‧TV/Video ‧Wireless LAN ‧Rx communication channel Introduction
[110nm]10-bit 80 MSPS ADC IP 60000 Points 210.000 K μm^2 80 MHz 110 nm  
UIP_ADC10_80M_183288 is an ultra-compact and very low power analog-to-digital converter (ADC) silicon IP. The 10-bit 80 MSPS ADC includes an internal custom bandgap voltage reference. It is capable of supplying bias currents to other parallel ADCs.   The ADC uses fully differential pipeline architecture with custom low-disturbance digital correction technique which allows single supply bus for both digital and analog. The ADC is designed for high dynamic performance for input frequencies up to Nyquist. This makes the IP perfectly suitable for video, imaging and communication appliances.   The IP is available in different metal options as well as deep N-well (DNW) option for SoC with high level of substrate noise. It consumes only 24mW at 80 MSPS operation and requires silicon area of 0.21 mm2. The IP does not require any external decoupling and is ideal for integration in mixed-signal systems. The output data of ADC is available in 2’s complement format.   UIP_ADC10_80M_183288 can be used in the following applications:   ‧Digital imaging ‧TV/Video ‧Wireless LAN ‧Rx communication channel Introduction
14-Bit 3 MSPS ADC in GSMC110nm 60000 Points 32.000 K μm^2 3 MHz 110 nm  
UIP_ADC14_3M_245303  is  compact  and  low power 14-bit analog-to-digital converter silicon IP.  It  has  20  single-end  input  channel selection  multiplexer  or  10  differential  input channels  selection.  This  ADC  uses  fully differential SAR architecture optimized for low power and small area. The ADC is designed for  high  dynamic  performance  for  input frequencies  up  to  Nyquist  rate.  This  ADC consumes  150  uA  at  3  MSPS  operation  and occupies  silicon  area  of  0.32 mm2 .  The  ADC has  high  immunity  to  substrate  noise  and  is ideal  for  SoC  integration.   APPLICATIONS  General purpose data acquisition Battery monitory system  Temperature monitory system Introduction
14 Bit Rail to Rail DAC 60000 Points 75.000 K μm^2 1 MHz 110 nm  
UIP_DAC14_1M_392231  is  compact  and  low power 14-bit digital-to-analog converter silicon IP. It features wide range input supply voltage from  1.7V  to  5.6V.  Its  single-end  output ranges from 0.1 to 0.9 of supply voltage.     This DAC IP is self-biased and optimized for low  power  and  small  area.   At 1 MHz conversation rate, it only consumes 680uA to drive  15K/50pF  loading  and  occupies  silicon area of 0.075 mm2.   APPLICATIONS General purpose digital to analog converter Battery monitory system Housekeeping Auxiliary functionality Introduction
NVM test and repair 60000 Points 5.250 K Gates 2.2 GHz 40 nm  
HEART (High Efficient Accumulative Repairing Technical) is a built-in self-repair (BISR) mechanism which uses to recover errors detected after memory testing and to improve yield rate. This mechanism is implemented with spare memories and a built-in redundancy analyze (BIRA) logics which is designed to allocate the redundancy. It needs a storable device (eFuse, OTP or registers) to store testing results after analysis. We provides an efficient accumulative repairing solution to combine advantages of soft BISR mechanism and hard BISR mechanism for improving yield rate. Introduction
μIP Price Logic Gate Count Clock Rate Technology   Ratings

 4  5  6  7  8  9  10  11  12  13