Contact UsNeed
help
?










Mart > IP Mart

    
JPEG-MT-V By Quotes None None None  
This JPEG compression IP core supports the Baseline Sequential DCT and the Ex- tended Sequential DCT modes of the ISO/IEC 10918-1 standard. It implements a scalable, ultra-high-performance, ASIC or FPGA, hardware JPEG encoder that can compress high pixel rate video using significantly fewer silicon resources and less pow- er than encoders for video compression standards such as HEVC/H,265, DSC, AVC/H.264, or JPEG200. The JPEG-MT-V Encoder produces compressed JPEG images and the video payload for Motion-JPEG container formats. It accepts images with up to 12-bit color samples and up to four color components, in all widely-used color subsampling formats. Depending on its configuration, the encoder processes from two to 32 color samples per clock cycle, enabling it to compress UHD (4K/8K) video and/or very high frame vid- eo. Once programmed, the easy-to-use encoder requires no assistance from a host pro- cessor to compress an arbitrary number of frames. SoC integration is straightforward thanks to standardized AMBA® interfaces: AXI Streaming for pixel and compressed da- ta, and a 32-bit APB slave interface for registers access. Users can optionally insert timestamps or other metadata in the compressed stream using a dedicated AXI Stream- ing interface.   Introduction
JPEG Encoder By Quotes None 250 MHz 130 nm  
This IP core has been developed to be a complete standards compliant JPEG / MJPEG Hardware Compressor / Encoder. The data interfaces in the JPEG Encoder IP Core (JPEGE) use the AXI industry standard. The Master I/O data interfaces use an AXI3 bus, forward compatible with AXI4 interconnects. In order to let you assess the properties of the on-the-fly selectable quality setting, please use the slider below the image in order to see the final compressed image and compression ratio. The JPEG Encoder IP Core has a real throughput of two compressed pixels every three clock cycles at any compression ratio for a chroma subsampling of 4:2:0. To calculate the throughput for your platform. Introduction
μIP Price Logic Gate Count Clock Rate Technology   Ratings