Contact UsNeed
help
?










Mart > IP Mart

    
Power Controller By Quotes 0.165 μm^2 None 90 nm  
It is a configurable core that is configured for each specific SoC, delivering all the necessary auxiliary supply, monitoring and protection.  Introduction
[110nm] 10-bit 165 MSPS ADC IP 70000 Points 210.000 K μm^2 165 MHz 110 nm  
UIP_ADC10_165M_213779 is an ultra-compact and very low power analog-to-digital converter (ADC) silicon IP. The 10-bit 165 MSPS ADC includes an internal custom bandgap voltage reference. It is capable of supplying bias currents to other parallel ADCs.   The ADC uses fully differential pipeline architecture with custom low-disturbance digital correction technique which allows single supply bus for both digital and analog. The ADC is designed for high dynamic performance for input frequencies up to Nyquist. This makes the IP perfectly suitable for video, imaging and communication appliances.   The IP is available in different metal options as well as deep N-well (DNW) option for SoC with high level of substrate noise. It consumes only 48mW at 165 MSPS operation and requires silicon area of 0.21 mm2. The IP does not require any external decoupling and is ideal for integration in mixed-signal systems. The output data of ADC is available in 2’s complement format.   UIP_ADC10_165M_213779 can be used in the following applications:   ‧Digital imaging ‧TV/Video ‧Wireless LAN ‧Rx communication channel ‧IOT Introduction
[110nm]10-bit 80 MSPS ADC IP 60000 Points 210.000 K μm^2 80 MHz 110 nm  
UIP_ADC10_80M_183288 is an ultra-compact and very low power analog-to-digital converter (ADC) silicon IP. The 10-bit 80 MSPS ADC includes an internal custom bandgap voltage reference. It is capable of supplying bias currents to other parallel ADCs.   The ADC uses fully differential pipeline architecture with custom low-disturbance digital correction technique which allows single supply bus for both digital and analog. The ADC is designed for high dynamic performance for input frequencies up to Nyquist. This makes the IP perfectly suitable for video, imaging and communication appliances.   The IP is available in different metal options as well as deep N-well (DNW) option for SoC with high level of substrate noise. It consumes only 24mW at 80 MSPS operation and requires silicon area of 0.21 mm2. The IP does not require any external decoupling and is ideal for integration in mixed-signal systems. The output data of ADC is available in 2’s complement format.   UIP_ADC10_80M_183288 can be used in the following applications:   ‧Digital imaging ‧TV/Video ‧Wireless LAN ‧Rx communication channel Introduction
14-Bit 3 MSPS ADC in GSMC110nm 60000 Points 32.000 K μm^2 3 MHz 110 nm  
UIP_ADC14_3M_245303  is  compact  and  low power 14-bit analog-to-digital converter silicon IP.  It  has  20  single-end  input  channel selection  multiplexer  or  10  differential  input channels  selection.  This  ADC  uses  fully differential SAR architecture optimized for low power and small area. The ADC is designed for  high  dynamic  performance  for  input frequencies  up  to  Nyquist  rate.  This  ADC consumes  150  uA  at  3  MSPS  operation  and occupies  silicon  area  of  0.32 mm2 .  The  ADC has  high  immunity  to  substrate  noise  and  is ideal  for  SoC  integration.   APPLICATIONS  General purpose data acquisition Battery monitory system  Temperature monitory system Introduction
14 Bit Rail to Rail DAC 60000 Points 75.000 K μm^2 1 MHz 110 nm  
UIP_DAC14_1M_392231  is  compact  and  low power 14-bit digital-to-analog converter silicon IP. It features wide range input supply voltage from  1.7V  to  5.6V.  Its  single-end  output ranges from 0.1 to 0.9 of supply voltage.     This DAC IP is self-biased and optimized for low  power  and  small  area.   At 1 MHz conversation rate, it only consumes 680uA to drive  15K/50pF  loading  and  occupies  silicon area of 0.075 mm2.   APPLICATIONS General purpose digital to analog converter Battery monitory system Housekeeping Auxiliary functionality Introduction
USB 3.0 PHY in 110nm By Quotes 1.000 M μm^2 25 MHz 110 nm  
The IP is a high speed SERDES macro which complies with USB3.0 electrical interface specification.  This macro can be easily fabricated to form multiple lanes and implemented in USB systems design, both Host and Device.The  IP is supported USB3.0 Super Speed (5Gbps) protocol and data rate. Introduction
400 mA Buck DC-DC Converter in 110 nm (VBKS0400T110) By Quotes None None 110 nm  
Buck DC-DC Converter (Silicon-proven 110 nm, 400mA, excellent efficiency) The VBKS0400T110 IP core is a Buck DC-DC switching converter that delivers up to 400 mA of load current. It includes voltage, current and clock references, power-on-reset circuitry, overcurrent protection, a temperature sensor and ESD protection. Soft-start circuitry prevents high currents during start-up, and soft-stop circuitry provides a controlled shut-down sequence during a sudden shut down or fault detection. Introduction
14-Bit 3 MSPS ADC in GSMC110nm By Quotes 322.000 K μm^2 3 MHz 110 nm  
MCR_GS110_ADC14 is compact and low power 14-bit analog-to-digital converter silicon IP. It has 20 single-end input channel selection multiplexer or 10 differential input channels selection. This ADC uses fully differential SAR architecture optimized for low The ADC is designed for high dynamic performance for input frequencies up to Nyquist rate. Introduction
14-Bit 1MSPS DAC in GSMC110nm By Quotes 75.000 K μm^2 1 MHz 110 nm  
MIC_DAC14 is compact and low power 14-bit digital-to-analog converter silicon IP. It features wide range input supply voltage from 1.7V to 5.6V. Its single-end output ranges from 0.1 to 0.9 of supply voltage. Introduction
Clock divider by 3 100 Points 52.000 Gates 370 MHz 130 nm  
There are 2 types of circuits in digital logic world. One is combinational, and the other is sequential. The difference between them is that the latter one has storage (memory) while the former one does not. Thus, in contrast to combinational circuits, whose output depends only on the current values of its inputs, the output of sequential circuits depends not only on the current values of its inputs but also on the past values of them. Based on the characteristic of sequential circuits, we can build counters. In addition, we can further build clock dividers with the counters we designed Introduction
μIP Price Logic Gate Count Clock Rate Technology   Ratings

 4  5  6  7  8  9  10  11  12  13