Contact UsNeed
help
?










Mart > IP Mart

    
PCI Express Gen4 PHY IP in TSMC 12nm FFC By Quotes None 25 MHz 12 nm  
The Peripheral Component Interconnect Express (PCIe) x4 PHY is compliant with PCIe 4.0 Base Specification with support of PIPE v4.4 inter- face spec. Lower power consumption is achieved due to support of addition- al PLL control, reference clock control, and embedded power gating control. Also, since aforementioned low power mode setting is configurable, the PHY is widely applicable for various scenarios under different consideration of power consumption. Introduction
PCI Express Gen4 PHY IP in 28nm HPC+ By Quotes None 25 MHz 28 nm  
The Peripheral Component Interconnect Express (PCIe) x4 PHY is compliant with PCIe 4.0 Base Specification with support of PIPE v4.4 inter- face spec. Lower power consumption is achieved due to support of addition- al PLL control, reference clock control, and embedded power gating control. Also, since aforementioned low power mode setting is configurable, the PHY is widely applicable for various scenarios under different consideration of power consumption. Introduction
DSP-BASED ETHERNET TRANSCEIVER in UMC 28nm HPC+ By Quotes None 25 MHz 28 nm  
A 28nm DPS-based Gigabit Ethernet transceiver. Highly intergrated 1000BASE-T, 100BASE-TX, 100BASE-FX and 10BASE-Te. Fully compliant with 100BASE-FX IEEE 802.2u standard Introduction
PLL 3000M UMC 28 nm logic and Mixed-Mode HPC process By Quotes 92.400 K μm^2 27 MHz 28 nm  
It generates a stable high-speed clock from an external slower reference clock signal. It integrates a Voltage-Controlled Oscillator (VCO), a Phase-Frequency Detector (PFD), a Low-Pass Filter (LPF), a 9-bit programmable loop divider, a 2-bit programmable pre-divider and associated support circuitry. This PLL is designed by using the UMC 28 nm logic and Mixed-Mode HPC process, and it supports an operating voltage ranging from 0.81 V to 0.99 V with an operating junction temperature ranging between -40 °C and 125 °C. It accepts FREF frequency ranging from 6 MHz to 27 MHz and generates the output frequency up to 3000 MHz. Introduction
USB 3.1 GEN1 DUAL-ROLE CONTROLLER By Quotes None 30 MHz None  
This is an USB 3.1 Gen1 dual-role controller, which is compliant to USB 2.0/USB 3.1 Gen1 specifications. The controller can act as a standard host or peripheral for easy system implementation. The role can be selected via static pin selection. Introduction
USB2.0 OTG PHY in 40 nm 80000 Points 257.556 K μm^2 30.6 MHz 40 nm  
The IP is an UTMI+ Level 3 compatible USB2.0 OTG function  transceiver IP. It is comprised of both USB1.1 and USB2.0 transceivers; itis  comprised of digital logic needed to convert USB serial data to 8 or 16 bit parallel  data for high speed and full speed. It is also support full speed and low speed  serial mode. Introduction
USB2.0 UTMI Device PHY(non-oscillator) 100000 Points 280.000 K μm^2 30.6 MHz 40 nm  
The USB PHY is an UTMI compatible USB2.0 device PHY IP which does not  require external oscillator reference. It is comprised of both USB1.1 and USB2.0  transceivers and it is also comprised of digital logic needed to convert USB serial  data to 8 or 16 bit parallel data. Introduction
12-Bit 50 MSPS ADC in IBM 180 SOI By Quotes 280.000 μm^2 50 MHz 180 nm  
MICIP_ADC12 is compact and low power 12-bit analog-to-digital converter silicon IP. This ADC uses 1.5b/stage pipelined architecture optimized for low power and small area. Introduction
PLL 1300M UMC 28 nm logic and Mixed-Mode HPC process By Quotes 109.850 K μm^2 50 MHz 28 nm  
It is used to generate a stable, high-speed clock from an external slower clock signal. It integrates one Voltage-Controlled Oscillator (VCO), one Phase-Frequency Detector (PFD), one Low-Pass Filter (LPF), one 8-bit programmable divider, and other associated support circuitries. This PLL supports an operating voltage ranging from 0.81 V to 0.99 V with an operating junction temperature ranging between -40 °C and 125 °C. This IP uses the input operating frequency of PFD ranging from 6 MHz to 25 MHz and generates the output frequency ranging from 25 MHz to 1300 MHz.    The jitter performance of a PLL is highly dependent on the floor plan of ASIC. Because PLL is a sensitive cell when integrated into an ASIC design, the best way to maximize its capacity is to keep PLL away from the noisy blocks in the core region, such as the memory block and the high-driving logic circuit, and the I/O region, such as the high-driving I/O. This PLL must be placed around the I/O area. Providing sufficient space between this PLL and the noisy blocks is a simple and effective approach to reduce the coupled substrate noise. Introduction
10-bit 80 MSPS ADC IP in 130 nm 60000 Points 210.000 K μm^2 80 MHz 130 nm  
UIP_ADC10_80M_156287 is an ultra-compact and very low power analog-to-digital converter (ADC) silicon IP. The 10-bit 80 MSPS ADC includes an internal custom bandgap voltage reference. It is capable of supplying bias currents to other parallel ADCs.   The ADC uses fully differential pipeline architecture with custom low-disturbance digital correction technique which allows single supply bus for both digital and analog. The ADC is designed for high dynamic performance for input frequencies up to Nyquist. This makes the IP perfectly suitable for video, imaging and communication appliances.   The IP is available in different metal options as well as deep N-well (DNW) option for SoC with high level of substrate noise. It consumes only 24mW at 80 MSPS operation and requires silicon area of 0.21 mm2. The IP does not require any external decoupling and is ideal for integration in mixed-signal systems. The output data of ADC is available in 2’s complement format.   UIP_ADC10_80M_156287 can be used in the following applications:   ‧Digital imaging ‧TV/Video ‧Wireless LAN ‧Rx communication channel Introduction
μIP Price Logic Gate Count Clock Rate Technology   Ratings

 2  3  4  5  6  7  8  9  10  11